Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109775, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38726371

ABSTRACT

The transition of naive T lymphocytes into antigenically activated effector cells is associated with a metabolic shift from oxidative phosphorylation to aerobic glycolysis. This shift facilitates production of the key anti-tumor cytokine interferon (IFN)-γ; however, an associated loss of mitochondrial efficiency in effector T cells ultimately limits anti-tumor immunity. Memory phenotype (MP) T cells are a newly recognized subset that arises through homeostatic activation signals following hematopoietic transplantation. We show here that human CD4+ MP cell differentiation is associated with increased glycolytic and oxidative metabolic activity, but MP cells retain less compromised mitochondria compared to effector CD4+ T cells, and their IFN-γ response is less dependent on glucose and more reliant on glutamine. MP cells also produced IFN-γ more efficiently in response to weak T cell receptor (TCR) agonism than effectors and mediated stronger responses to transformed B cells. MP cells may thus be particularly well suited to carry out sustained immunosurveillance against neoplastic cells.

2.
Immunology ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736328

ABSTRACT

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.

3.
J Immunol ; 212(2): 284-294, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37991420

ABSTRACT

There is considerable interest in therapeutically engaging human γδ T cells. However, due to the unique TCRs of human γδ T cells, studies from animal models have provided limited directly applicable insights, and human γδ T cells from key immunological tissues remain poorly characterized. In this study, we investigated γδ T cells from human spleen tissue. Compared to blood, where Vδ2+Vγ9+ T cells are the dominant subset, splenic γδ T cells included a variety of TCR types, with Vδ1+ T cells typically being the most frequent. Intracellular cytokine staining revealed that IFN-γ was produced by a substantial fraction of splenic γδ T cells, IL-17A by a small fraction, and IL-4 was minimal. Primary splenic γδ T cells frequently expressed NKG2D (NK group 2 member D) and CD16, whereas expression of DNAM-1 (DNAX accessory molecule 1), CD28, PD-1, TIGIT, and CD94 varied according to subset, and there was generally little expression of natural cytotoxicity receptors, TIM-3, LAG-3, or killer Ig-like receptors. In vitro expansion was associated with marked changes in expression of these activating and inhibitory receptors. Analysis of functional responses of spleen-derived Vδ2+Vγ9+, Vδ1+Vγ9+, and Vδ1+Vγ9- T cell lines to recombinant butyrophilin BTN2A1 and BTN3A1 demonstrated that both Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells were capable of responding to the extracellular domain of BTN2A1, whereas the addition of BTN3A1 only markedly enhanced the responses of Vδ2+Vγ9+ T cells. Conversely, Vδ1+Vγ9+ T cells appeared more responsive than Vδ2+Vγ9+ T cells to TCR-independent NKG2D stimulation. Thus, despite shared recognition of BTN2A1, differential effects of BTN3A1 and coreceptors may segregate target cell responses of Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Spleen , Animals , Humans , Spleen/metabolism , Butyrophilins , NK Cell Lectin-Like Receptor Subfamily K , T-Lymphocytes , Antigens, CD
4.
Sci Adv ; 9(12): eadf0567, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36961891

ABSTRACT

An important paradigm in allogeneic hematopoietic cell transplantations (allo-HCTs) is the prevention of graft-versus-host disease (GVHD) while preserving the graft-versus-leukemia (GVL) activity of donor T cells. From an observational clinical study of adult allo-HCT recipients, we identified a CD4+/CD8+ double-positive T cell (DPT) population, not present in starting grafts, whose presence was predictive of ≥ grade 2 GVHD. Using an established xenogeneic transplant model, we reveal that the DPT population develops from antigen-stimulated CD8 T cells, which become transcriptionally, metabolically, and phenotypically distinct from single-positive CD4 and CD8 T cells. Isolated DPTs were sufficient to mediate xeno-GVHD pathology when retransplanted into naïve mice but provided no survival benefit when mice were challenged with a human B-ALL cell line. Overall, this study reveals human DPTs as a T cell population directly involved with GVHD pathology.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/pathology
5.
Front Immunol ; 13: 998378, 2022.
Article in English | MEDLINE | ID: mdl-36189224

ABSTRACT

Invariant natural killer T (iNKT) cells are innate T cells that are recognized for their potent immune modulatory functions. Over the last three decades, research in murine models and human observational studies have revealed that iNKT cells can act to limit inflammatory pathology in a variety of settings. Since iNKT cells are multi-functional and can promote inflammation in some contexts, understanding the mechanistic basis for their anti-inflammatory effects is critical for effectively harnessing them for clinical use. Two contrasting mechanisms have emerged to explain the anti-inflammatory activity of iNKT cells: that they drive suppressive pathways mediated by other regulatory cells, and that they may cytolytically eliminate antigen presenting cells that promote excessive inflammatory responses. How these activities are controlled and separated from their pro-inflammatory functions remains a central question. Murine iNKT cells can be divided into four functional lineages that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2, NKT10) cytokine profiles. However, in humans these subsets are not clearly evident, and instead most iNKT cells that are CD4+ appear oriented towards polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more predisposed towards cytolytic activity. Additionally, structurally distinct antigens have been shown to induce TH1- or TH2-biased responses by iNKT cells in murine models, but human iNKT cells may respond to differing levels of TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine production. We discuss the implications of these differences for translational efforts focused on the anti-inflammatory activity of iNKT cells.


Subject(s)
Natural Killer T-Cells , Animals , Antigens, CD1d/metabolism , Cytokines/metabolism , Humans , Inflammation/metabolism , Lymphocyte Activation , Mice , Receptors, Antigen, T-Cell
6.
Sci Adv ; 8(19): eabo1072, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544579

ABSTRACT

The superantigen staphylococcal enterotoxin C (SEC) is critical for Staphylococcus aureus infective endocarditis (SAIE) in rabbits. Superantigenicity, its hallmark function, was proposed to be a major underlying mechanism driving SAIE but was not directly tested. With the use of S. aureus MW2 expressing SEC toxoids, we show that superantigenicity does not sufficiently account for vegetation growth, myocardial inflammation, and acute kidney injury in the rabbit model of native valve SAIE. These results highlight the critical contribution of an alternative function of superantigens to SAIE. In support of this, we provide evidence that SEC exerts antiangiogenic effects by inhibiting branching microvessel formation in an ex vivo rabbit aortic ring model and by inhibiting endothelial cell expression of one of the most potent mediators of angiogenesis, VEGF-A. SEC's ability to interfere with tissue revascularization and remodeling after injury serves as a mechanism to promote SAIE and its life-threatening systemic pathologies.

7.
PLoS Pathog ; 18(4): e1010453, 2022 04.
Article in English | MEDLINE | ID: mdl-35472072

ABSTRACT

Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.


Subject(s)
B-Lymphocytes , Burkitt Lymphoma , Herpesvirus 4, Human , Interferon Regulatory Factors , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B-Lymphocytes/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/virology , Herpesvirus 4, Human/metabolism , Humans , Interferon Regulatory Factors/metabolism , Phenotype , Viral Proteins/metabolism
8.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34112724

ABSTRACT

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that interact with key antigen-presenting cells to modulate adaptive T-cell responses in ways that can either promote protective immunity, or limit pathological immune activation. Understanding the immunological networks engaged by iNKT cells to mediate these opposing functions is a key pre-requisite to effectively using iNKT cells for therapeutic applications. Using a human umbilical cord blood xenotransplantation model, we show here that co-transplanted allogeneic CD4+ iNKT cells interact with monocytes and T cells in the graft to coordinate pro-hematopoietic and immunoregulatory pathways. The nexus of iNKT cells, monocytes, and cord blood T cells led to the release of cytokines (IL-3, GM-CSF) that enhance hematopoietic stem and progenitor cell activity, and concurrently induced PGE2-mediated suppression of T-cell inflammatory responses that limit hematopoietic stem and progenitor cell engraftment. This resulted in successful long-term hematopoietic engraftment without pretransplant conditioning, including multi-lineage human chimerism and colonization of the spleen by antibody-producing human B cells. These results highlight the potential for using iNKT cellular immunotherapy to improve rates of hematopoietic engraftment independently of pretransplant conditioning.


Subject(s)
Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Transplantation Immunology/immunology , Animals , Antigen-Presenting Cells/immunology , Cytokines/immunology , Female , Fetal Blood/immunology , Humans , Immunity, Innate/immunology , Immunotherapy/methods , Lymphocyte Activation/immunology , Mice , Mice, Inbred NOD , Tissue Transplantation/methods
9.
Front Immunol ; 11: 573406, 2020.
Article in English | MEDLINE | ID: mdl-33193358

ABSTRACT

NBSGW mice are highly immunodeficient and carry a hypomorphic mutation in the c-kit gene, providing a host environment that supports robust human hematopoietic expansion without pre-conditioning. These mice thus provide a model to investigate human hematopoietic engraftment in the absence of conditioning-associated damage. We compared transplantation of human CD34+ HSPCs purified from three different sources: umbilical cord blood, adult bone marrow, and adult G-CSF mobilized peripheral blood. HSPCs from mobilized peripheral blood were significantly more efficient (as a function of starting HSPC dose) than either cord blood or bone marrow HSPCs at generating high levels of human chimerism in the murine blood and bone marrow by 12 weeks post-transplantation. While T cells do not develop in this model due to thymic atrophy, all three HSPC sources generated a human compartment that included B lymphocytic, myeloid, and granulocytic lineages. However, the proportions of these lineages varied significantly according to HSPC source. Mobilized blood HSPCs produced a strikingly higher proportion of granulocyte lineage cells (~35% as compared to ~5%), whereas bone marrow HSPC output was dominated by B lymphocytic cells, and cord blood HSPC output was enriched for myeloid lineages. Following transplantation, all three HSPC sources showed a shift in the CD34+ subset towards CD45RA+ progenitors along with a complete loss of the CD45RA-CD49f+ long-term HSC subpopulation, suggesting this model promotes mainly short-term HSC activity. Mice transplanted with cord blood HSPCs maintained a diversified human immune compartment for at least 36 weeks after the primary transplant, although mice given adult bone marrow HSPCs had lost diversity and contained only myeloid cells by this time point. Finally, to assess the impact of non-HSPCs on transplantation outcome, we also tested mice transplanted with total or T cell-depleted adult bone marrow mononuclear cells. Total bone marrow mononuclear cell transplants produced significantly lower human chimerism compared to purified HSPCs, and T-depletion rescued B cell levels but not other lineages. Together these results reveal marked differences in engraftment efficiency and lineage commitment according to HSPC source and suggest that T cells and other non-HSPC populations affect lineage output even in the absence of conditioning-associated inflammation.


Subject(s)
Cell Lineage , Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Immunocompromised Host/genetics , Mutation , Proto-Oncogene Proteins c-kit/genetics , Animals , Antigens, CD34/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Survival , Cells, Cultured , Female , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/immunology , Humans , Integrin alpha6/metabolism , Leukocyte Common Antigens/metabolism , Male , Mice, Mutant Strains , Peripheral Blood Stem Cell Transplantation , Phenotype , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Transplantation Chimera
10.
J Immunol ; 205(1): 272-281, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32444392

ABSTRACT

Acute graft-versus-host disease (GVHD) is a frequent complication of hematopoietic transplantation, yet patient risk stratification remains difficult, and prognostic biomarkers to guide early clinical interventions are lacking. We developed an approach to evaluate the potential of human T cells from hematopoietic grafts to produce GVHD. Nonconditioned NBSGW mice transplanted with titrated doses of human bone marrow developed GVHD that was characterized by widespread lymphocyte infiltration and organ pathology. Interestingly, GVHD was not an inevitable outcome in our system and was influenced by transplant dose, inflammatory status of the host, and type of graft. Mice that went on to develop GVHD showed signs of rapid proliferation in the human T cell population during the first 1-3 wk posttransplant and had elevated human IFN-γ in plasma that correlated negatively with the expansion of the human hematopoietic compartment. Furthermore, these early T cell activation metrics were predictive of GVHD onset 3-6 wk before phenotypic pathology. These results reveal an early window of susceptibility for pathological T cell activation following hematopoietic transplantation that is not simply determined by transient inflammation resulting from conditioning-associated damage and show that T cell parameters during this window can serve as prognostic biomarkers for risk of later GVHD development.


Subject(s)
Graft vs Host Disease/diagnosis , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes/immunology , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Graft vs Host Disease/blood , Graft vs Host Disease/immunology , Humans , Interferon-gamma/blood , Interferon-gamma/immunology , Lymphocyte Activation , Male , Mice , Postoperative Period , Primary Cell Culture , Prognosis , Time Factors , Transplantation Chimera/immunology , Transplantation Conditioning/adverse effects , Transplantation, Heterologous/adverse effects
11.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32132242

ABSTRACT

Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (Δ3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic Δ3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. Δ3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. Δ3A and WT tumors expressed equivalent levels of EBNA2 and p16, but Δ3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, Δ3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus Δ3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (Δ3A) and wild-type EBV. The Δ3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, Δ3A tumors had less LMP1. Our analysis suggested that Δ3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.


Subject(s)
Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Fetal Blood/metabolism , Herpesvirus 4, Human/genetics , Lymphoma/virology , Animals , B-Lymphocytes/virology , Cell Transformation, Viral , Disease Models, Animal , Gene Expression Regulation, Neoplastic , HEK293 Cells , Herpesvirus 4, Human/physiology , Humans , Killer Cells, Natural/immunology , Lymphoma/genetics , Lymphoma/pathology , Lymphoma, B-Cell , Mice , Mutagenesis, Site-Directed , Sequence Analysis, RNA , Sequence Deletion , T-Lymphocytes/immunology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency/genetics
12.
Adv Exp Med Biol ; 1224: 63-77, 2020.
Article in English | MEDLINE | ID: mdl-32036605

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes that circulate in blood and also reside in mucosal tissues. Blood MAIT cells are typically highly Th1-polarized, while those in mucosal tissues include both Th1- and Th17-polarized subsets. MAIT cells mount cytokine and cytolytic responses as a result of T cell receptor (TCR)-mediated recognition of microbially derived metabolites of riboflavin (vitamin B2) presented by the MR1 antigen-presenting molecule. Additionally, MAIT cells can be activated by inflammatory cytokines produced by antigen-presenting cells (APCs) that have been exposed to pathogen-associated molecular patterns (PAMPs). Since the antigenic metabolites of riboflavin recognized by MAIT cells are produced by many microorganisms, including pathogens as well as non-pathogenic colonists, the inflammatory state of the tissue may be a key feature that determines the nature of MAIT cell responses. Under normal conditions where inflammatory cytokines are not produced, MAIT cell responses to microbial metabolites may simply serve to help maintain a healthy balance between epithelial cells and microbial colonists. In contrast, in situations where inflammatory cytokines are produced (e.g., pathogenic infection or damage to epithelial tissue), MAIT cell responses may be more potently pro-inflammatory. Since chronic inflammation and microbial drivers are associated with tumorigenesis and also trigger MAIT cell responses, the nexus of MAIT cells, local microbiomes, and epithelial cells may play an important role in epithelial carcinogenesis. This chapter reviews current information about MAIT cells and epithelial tumors, where the balance of evidence suggests that enrichment of Th17-polarized MAIT cells at tumor sites associates with poor patient prognosis. Studying the role of MAIT cells and their interactions with resident microbes offers a novel view of the biology of epithelial tumor progression and may ultimately lead to new approaches to target MAIT cells clinically.


Subject(s)
Epithelial Cells/pathology , Mucosal-Associated Invariant T Cells , Neoplasms/pathology , Cytokines/immunology , Humans , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/immunology , Neoplasms/drug therapy , Prognosis , Receptors, Antigen, T-Cell/immunology
13.
Genetics ; 214(1): 121-134, 2020 01.
Article in English | MEDLINE | ID: mdl-31754016

ABSTRACT

One major aspect of the aging process is the onset of chronic, low-grade inflammation that is highly associated with age-related diseases. The molecular mechanisms that regulate these processes have not been fully elucidated. We have identified a spontaneous mutant mouse line, small with kinky tail (skt), that exhibits accelerated aging and age-related disease phenotypes including increased inflammation in the brain and retina, enhanced age-dependent retinal abnormalities including photoreceptor cell degeneration, neurodegeneration in the hippocampus, and reduced lifespan. By positional cloning, we identified a deletion in chondroitin sulfate synthase 1 (Chsy1) that is responsible for these phenotypes in skt mice. CHSY1 is a member of the chondroitin N-acetylgalactosaminyltransferase family that plays critical roles in the biosynthesis of chondroitin sulfate, a glycosaminoglycan (GAG) that is attached to the core protein to form the chondroitin sulfate proteoglycan (CSPG). Consistent with this function, the Chsy1 mutation dramatically decreases chondroitin sulfate GAGs in the retina and hippocampus. In addition, macrophage and neutrophil populations appear significantly altered in the bone marrow and spleen of skt mice, suggesting an important role for CHSY1 in the functioning of these immune cell types. Thus, our study reveals a previously unidentified impact of CHSY1 in the retina and hippocampus. Specifically, chondroitin sulfate (CS) modification of proteins by CHSY1 appears critical for proper regulation of immune cells of the myeloid lineage and for maintaining the integrity of neuronal tissues, since a defect in this gene results in increased inflammation and abnormal phenotypes associated with age-related diseases.


Subject(s)
Chondroitin Sulfates/metabolism , Glucuronosyltransferase/metabolism , Inflammation/metabolism , Multifunctional Enzymes/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , Proteins/genetics , Retinal Degeneration/metabolism , Age Factors , Animals , Apoptosis/physiology , Female , Glucuronosyltransferase/genetics , Inflammation/genetics , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Multifunctional Enzymes/genetics , Mutation , N-Acetylgalactosaminyltransferases/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology
14.
Methods Mol Biol ; 1884: 57-72, 2019.
Article in English | MEDLINE | ID: mdl-30465195

ABSTRACT

Recent clinical trials have yielded promising results suggesting that γδ T cell62-based immunotherapies can be effective against hematological malignancies. Human T cells expressing Vγ9Vδ2+ receptors are particularly attractive candidates for this application, since they can be readily expanded in vitro in large quantities for adoptive transfer and do not require HLA-matching of donors and recipients. While it is well established that Vγ9Vδ2+ T cells are potently cytolytic against many human cancers and it has been shown that they can control transplanted human tumors in xenogeneic model systems, little is known about the parameters that determine the antitumor efficacy of adoptively transferred Vγ9Vδ2+ T cells in physiologically relevant scenarios. In particular, it may be important to separate their immunosurveillance functions from those employed in the context of an established tumor. Moreover, it is critical to understand how the presence of an immunosuppressive environment, such as one where tumor-infiltrating T cells are held in check by inhibitory ligands, affects the functions of Vγ9Vδ2+ T cells. This chapter describes how to establish Epstein-Barr virus (EBV) infection of human umbilical cord blood mononuclear cells (CBMCs) within immunodeficient mice, so as to drive the in vivo formation of human B cell lymphomas that contain an immunosuppressive environment. Details are provided on how to expand human Vγ9Vδ2+ T cells from peripheral blood mononuclear cells (PBMCs), administer them to the mice, and evaluate tumors and other tissues.


Subject(s)
Cell Culture Techniques/methods , Immunotherapy, Adoptive/methods , Intraepithelial Lymphocytes/transplantation , Neoplasms/therapy , Animals , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Disease Models, Animal , Female , Fetal Blood/cytology , HEK293 Cells , Herpesvirus 4, Human/immunology , Humans , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/virology , Mice , Mice, Inbred NOD , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/virology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Transplantation Chimera/immunology
15.
J Immunol ; 201(8): 2452-2461, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30171164

ABSTRACT

By binding to its ligand ICAM-1, LFA-1 is known to mediate both adhesion and costimulatory signaling for T cell activation. The constitutively high LFA-1 cell surface expression of invariant NKT (iNKT) cells has been shown to be responsible for their distinctive tissue homing and residency within ICAM-rich endothelial vessels. However, the functional impact of LFA-1 on the activation of iNKT cells and other innate T lymphocyte subsets has remained largely unexplored. In particular, it is not clear whether LFA-1 contributes to innate-like pathways of T cell activation, such as IFN-γ secretion in response to IL-12. Using a recombinant ICAM-1-Fc fusion protein to stimulate human iNKT cells in the absence of APCs, we show that LFA-1 engagement enhances their IL-12-driven IFN-γ production. Surprisingly, exposure to high densities of ICAM-1 was also sufficient to activate iNKT cell cytokine secretion independently of IL-12 and associated JAK/STAT signaling. LFA-1 engagement induced elevated cytoplasmic Ca2+ and rapid ERK phosphorylation in iNKT cells, and the resulting IFN-γ secretion was dependent on both of these pathways. Analysis of freshly isolated human PBMC samples revealed that a fraction of lymphocytes that showed elevated LFA-1 cell surface expression produced IFN-γ in response to plate-bound ICAM-1-Fc. A majority of the responding cells were T cells, with the remainder NK cells. The responding T cells included iNKT cells, MAIT cells, and Vδ2+ γδ T cells. These results delineate a novel integrin-mediated pathway of IFN-γ secretion that is a shared feature of innate lymphocytes.


Subject(s)
Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Natural Killer T-Cells/immunology , T-Lymphocyte Subsets/immunology , Adult , Cell Adhesion , Cell Movement , Cells, Cultured , Clone Cells , Humans , Immunity, Innate , Interferon-gamma/metabolism , Lymphocyte Activation , Male , Protein Binding
16.
Breast Cancer Res ; 20(1): 111, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30208917

ABSTRACT

BACKGROUND: Antimicrobial T cells play key roles in the disease progression of cancers arising in mucosal epithelial tissues, such as the colon. However, little is known about microbe-reactive T cells within human breast ducts and whether these impact breast carcinogenesis. METHODS: Epithelial ducts were isolated from primary human breast tissue samples, and the associated T lymphocytes were characterized using flow cytometric analysis. Functional assays were performed to determine T-cell cytokine secretion in response to bacterially treated human breast carcinoma cells. RESULTS: We show that human breast epithelial ducts contain mucosal associated invariant T (MAIT) cells, an innate T-cell population that recognizes specific bacterial metabolites presented by nonclassical MR1 antigen-presenting molecules. The MAIT cell population from breast ducts resembled that of peripheral blood in its innate lymphocyte phenotype (i.e., CD161, PLZF, and interleukin [IL]-18 receptor coexpression), but the breast duct MAIT cell population had a distinct T-cell receptor Vß use profile and was markedly enriched for IL-17-producing cells compared with blood MAIT cells. Breast carcinoma cells that had been exposed to Escherichia coli activated MAIT cells in an MR1-dependent manner. However, whereas phorbol 12-myristate 13-acetate/ionomycin stimulation induced the production of both interferon-γ and IL-17 by breast duct MAIT cells, bacterially exposed breast carcinoma cells elicited a strongly IL-17-biased response. Breast carcinoma cells also showed upregulated expression of natural killer group 2 member D (NKG2D) ligands compared with primary breast epithelial cells, and the NKG2D receptor contributed to MAIT cell activation by the carcinoma cells. CONCLUSIONS: These results demonstrate that MAIT cells from human breast ducts mediate a selective T-helper 17 cell response to human breast carcinoma cells that were exposed to E. coli. Thus, cues from the breast microbiome and the expression of stress-associated ligands by neoplastic breast duct epithelial cells may shape MAIT cell responses during breast carcinogenesis.


Subject(s)
Breast Neoplasms/immunology , Epithelial Cells/immunology , Interleukin-17/immunology , Mucosal-Associated Invariant T Cells/immunology , Breast/cytology , Breast Neoplasms/metabolism , Breast Neoplasms/microbiology , Cell Line, Tumor , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Epithelial Cells/metabolism , Escherichia coli/immunology , Escherichia coli/physiology , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/metabolism
17.
Front Immunol ; 9: 54, 2018.
Article in English | MEDLINE | ID: mdl-29434589

ABSTRACT

Mice engrafted with human immune cells offer powerful in vivo model systems to investigate molecular and cellular processes of tumorigenesis, as well as to test therapeutic approaches to treat the resulting cancer. The use of umbilical cord blood mononuclear cells as a source of human immune cells for engraftment is technically straightforward, and provides T lymphocytes and autologous antigen-presenting cells (including B cells, monocytes, and DCs) that bear cognate antigen presenting molecules. By using a human-specific oncogenic virus, such as Epstein-Barr virus, de novo neoplastic transformation of the human B cells can be induced in vivo in a manner that models progressive stages of tumorigenesis from nascent neoplasia to the establishment of vascularized tumor masses with an immunosuppressive environment. Moreover, since tumorigenesis occurs in the presence of autologous T cells, this type of system can be used to investigate how T cells become suppressed during tumorigenesis, and how immunotherapies counteract immunosuppression. This minireview will provide a brief overview of the use of human umbilical cord blood transplanted into immunodeficient murine hosts to model antitumor responses.


Subject(s)
Blood Transfusion , Fetal Blood , Neoplasms/immunology , Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Blood Transfusion/methods , Disease Models, Animal , Graft Survival , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Immunotherapy/methods , Lymphocyte Activation/immunology , Mice , Neoplasms/therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/transplantation
18.
JCI Insight ; 2(13)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28679955

ABSTRACT

A central issue for adoptive cellular immunotherapy is overcoming immunosuppressive signals to achieve tumor clearance. While γδ T cells are known to be potent cytolytic effectors that can kill a variety of cancers, it is not clear whether they are inhibited by suppressive ligands expressed in tumor microenvironments. Here, we have used a powerful preclinical model where EBV infection drives the de novo generation of human B cell lymphomas in vivo, and autologous T lymphocytes are held in check by PD-1/CTLA-4-mediated inhibition. We show that a single dose of adoptively transferred Vδ2+ T cells has potent antitumor effects, even in the absence of checkpoint blockade or activating compounds. Vδ2+ T cell immunotherapy given within the first 5 days of EBV infection almost completely prevented the outgrowth of tumors. Vδ2+ T cell immunotherapy given more than 3 weeks after infection (after neoplastic transformation is evident) resulted in a dramatic reduction in tumor burden. The immunotherapeutic Vδ2+ T cells maintained low cell surface expression of PD-1 in vivo, and their recruitment to tumors was followed by a decrease in B cells expressing PD-L1 and PD-L2 inhibitory ligands. These results suggest that adoptively transferred PD-1lo Vδ2+ T cells circumvent the tumor checkpoint environment in vivo.

19.
Cell Rep ; 16(12): 3273-3285, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27653689

ABSTRACT

Invariant natural killer T (iNKT) cells are innate T lymphocytes that promote host defense against a variety of microbial pathogens. Whether microbial ligands are required for their protective effects remains unclear. Here, we show that iNKT cells stimulate human-monocyte-derived dendritic cells (DCs) to produce inflammatory mediators in a manner that does not require the presence of microbial compounds. Interleukin 2 (IL-2)-exposed iNKT cells selectively induced repeated cytoplasmic Ca(2+) fluxes in DCs that were dependent on signaling by the P2X7 purinergic receptor and mediated by ATP released during iNKT-DC interactions. Exposure to iNKT cells led to DC cyclooxygenase 2 (PTGS2) gene transcription, and release of PGE2 that was associated with vascular permeabilization in vivo. Additionally, soluble factors were released that induced neutrophil recruitment and activation and enhanced control of Candida albicans. These results suggest that sterile interactions between iNKT cells and monocyte-derived DCs lead to the production of non-redundant inflammatory mediators that promote neutrophil responses.


Subject(s)
Dendritic Cells/metabolism , Inflammation/immunology , Natural Killer T-Cells/immunology , Receptors, Purinergic P2X7/immunology , Animals , Dendritic Cells/immunology , Humans , Mice , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Natural Killer T-Cells/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction/immunology
20.
J Immunol ; 197(6): 2455-64, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27534556

ABSTRACT

The cytokine IL-1ß plays a central role in inflammatory responses that are initiated by microbial challenges, as well as in those that are due to endogenous processes (often called sterile inflammation). IL-1ß secretion that occurs independently of microbial stimulation is typically associated with the presence of endogenous alarmins, such as extracellular ATP (an indicator of cytopathic damage). In this study, we show that IL-2-activated human invariant NKT (iNKT) cells stimulate the secretion of IL-1ß protein by human peripheral blood monocytes in a manner that requires neither the presence of microbial compounds nor signaling through the extracellular ATP receptor P2X7 Monocyte IL-1ß production was specifically induced by iNKT cells, because similarly activated polyclonal autologous T cells did not have this effect. Secretion of IL-1ß protein occurred rapidly (within 3-4 h) and required cell contact between the iNKT cells and monocytes. Similar to IL-1ß production induced by TLR stimulation, the iNKT-induced pathway appeared to entail a two-step process involving NF-κB signaling and IL1B gene transcription, as well as assembly of the NLRP3 inflammasome and activation of caspase-1. However, in contrast to the classical inflammasome-mediated pathway of IL-1ß production, activation of monocytes via P2X7 was dispensable for iNKT-induced IL-1ß secretion, and potassium efflux was not required. Moreover, the iNKT-induced effect involved caspase-8 activity, yet it induced little monocyte death. These results suggest that IL-2-activated human iNKT cells induce monocytes to produce IL-1ß through a distinctive pathway that does not require the presence of microbial danger signals or alarmins associated with cytopathic damage.


Subject(s)
Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Monocytes/immunology , Natural Killer T-Cells/immunology , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Alarmins/immunology , Caspase 1/metabolism , Cytokines/metabolism , Humans , Inflammasomes , Interleukin-1beta/genetics , Interleukin-2/pharmacology , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Natural Killer T-Cells/drug effects , Receptors, Purinergic P2X7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...